

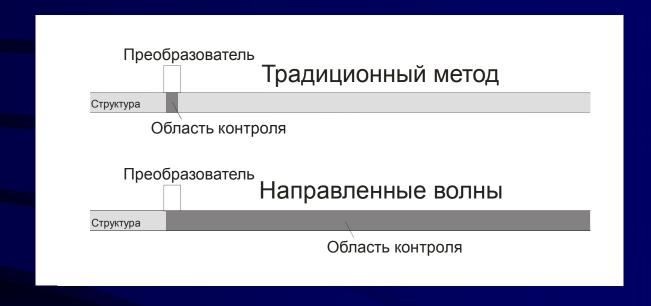
Guided Ultrasonics Ltd.

Wavemaker G3 Система экспресс диагностики трубопроводов

Диагностика направленными волнами

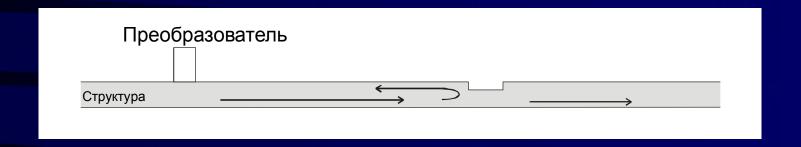
Компоненты системы Wavemaker G3

Направленные волны: основы метода


Стандартный УЗК и Направленные волны

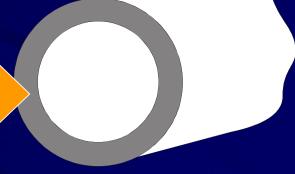
- Стандартный УЗК
 - Высокая частота
 - Малая длина волы
 - Чувствителен к
 малым дефектам при
 высокой частоте
 - Точечное измерение

- Направленная волна
 - Низкая частота
 - Большая длина волны
 - Чувствителен к«малым» дефектамдаже при низкойчастоте
 - Быстрое сканирование


Распространяется вдоль, а не сквозь структуру

Стенки трубы формируют направление распространения ультразвуковых волн, которые направляются вдоль трубы.

Отражение от объекта (например коррозия)


Когда направленная волна попадает на место изменения площади поперечного сечения (ППС), она отражается обратно к преобразователю.

В каждом месте изменения Площади Поперечного Сечения (ППС) происходит отражение направленных волн

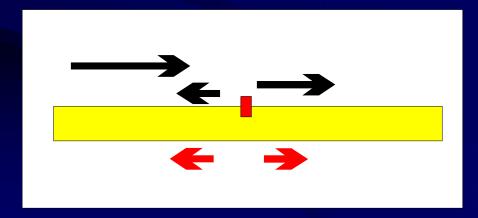
• Амплитуда зависит от области изменения ППС

Темно-серая область показывает область ППС

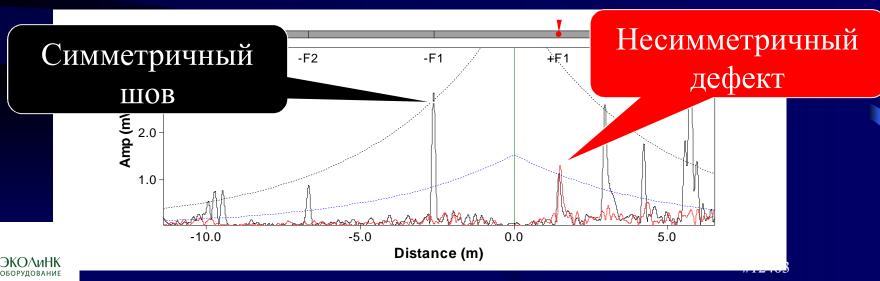
Изменения в ППС

- Волна одинакова чувствительна к дефекту независимо от его местоположения
- Волна одинаково чувствительна как к увеличению, так и уменьшению ППС
- Отражения от швов и концов трубы используются как реперные точки
- Амплитуда отраженного сигнала должна масштабироваться в зависимости от расстояния

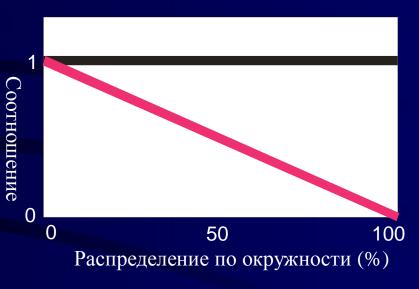
Отражения от симметричных объектов

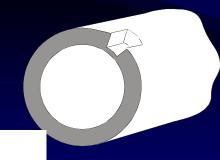

• Когда волны отражаются от симметричного объекта (такого как сварной шов), они отражаются как симметричные волны, которые появляются на экране в виде черной составляющей сигнала.

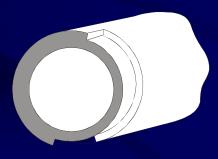
Несимметричный отражатель

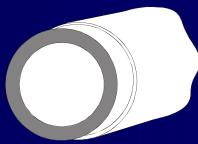

- Когда происходит отражение от несимметричного объекта возникает какое-то количество несимметричных волн.
- На экране они появляются как красная и черная составляющие сигнала
- Амплитуда красной составляющей показывает степень несимметричности.

Пример симметричных и несимметричных сигналов


- ЧЕРНЫЕ линии представляют симметричные объекты
 - Одинаково располагаются по окружности
- КРАСНЫЕ линии представляют несимметричные объекты
 - Неравномерно распределяются по окружности

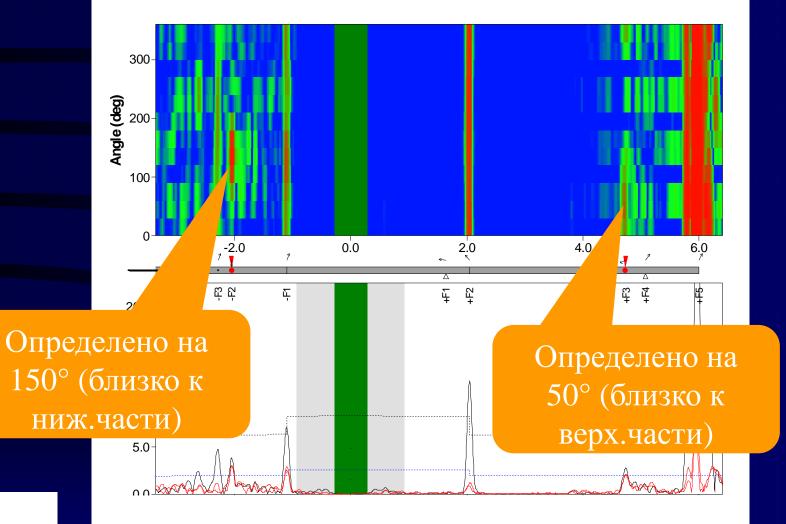

Соотношение красной и черной составляющих зависит от распределения объекта по окружности


Когда объект сосредоточен в одной точке КРАСНАЯ=ЧЕРНОЙ



Когда объект равномерно распределен по окружности

КРАСНАЯ << ЧЕРНОЙ



Развертка трубы (пример)

Название компании

Информация о месте, включая координаты (GPS), данные оператора и данные по оборудованию

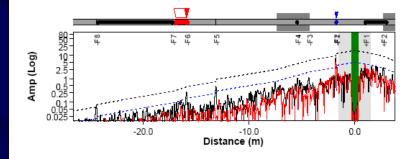
Перечень особенностей трубы с расстояниями, типом и примечаниями оператора

A-Scan развертка, показывающая обработанные данные для расшифровки

Crided Ultrasonies ted

Result: Major Concern

Pipe: roadside Site: demo Location: weld -1.8 Size: 4 inch

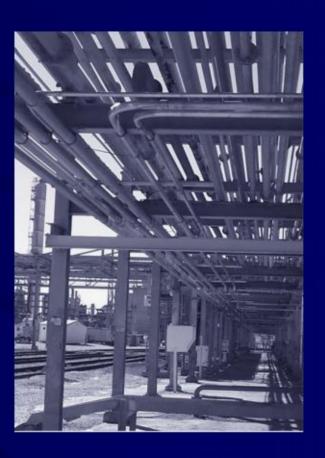

Ring: R2F04(560)-Circum Config: 2.2FR, T(0,1) Calibration: Automatic (1508.66 mV) Version: 3.92, Wavemaker G313

Tested: 23 Oct 2006 09:34 Client: Pergam Procedure: GU 1.1 Tested by: Mark Evans[GUL]

General Notes: Pipe was unpainted and lying on the ground. Occasionally buried by sandy

Minor general external corrosion was observed along the entire length. The result indicates that the pipe exhiibits 5% general corrosion along it's

Feature	Location	ECL	Extent	Class	Notes
+F2	2.67	-	70	Earth	
+F1	1	10	0	Minor	This area shows increased general corrosion up to the call level
-F1	-1.74	19	35	Medium	Weld shows no visual sign of defects but non-symmetry indicates internal defect.
-F2	-1.79	-	35	Weld	
-F3	-4.33	-	60	Entrance	
-F4	-5.44	9	60	Minor	This area shows increased general corrosion up to the call level
-F5	-13.13	-	90	Weld	
-F6	-15.89	17	90	Severe	Visually verified. Two areas of external corrosion approx 50% wall, 40% circumference
-F7	-17.22	9	70	Minor	This area shows increased general corrosion up to the call level
-F8	-24 43	-	90	Weld	·


Примеры обычного применения метода

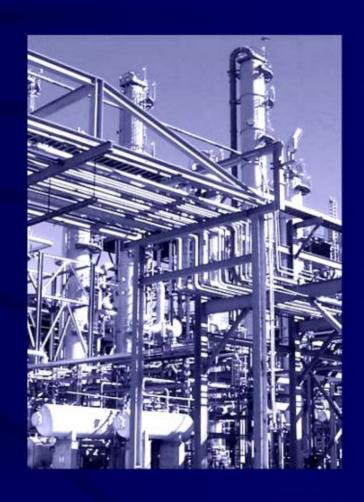
Стеллажи труб

Обычно стеллажи труб легко диагностируются. Можно проверить более 100м длины трубопровода с одной точки

Изолированные трубы

Только небольшая часть изоляционного материала должна быть удалена.

Можно проверить более 100м длины трубопровода с одной точки



Трубы проходящие поверху

Необходим ограниченный доступ

Можно проверить более 100м длины трубопровода с одной точки

Переходы под дорогой в рукавах

Достаточно внешнего доступа

Может быть проверенно до 35m длины трубопровода с одной точки в зависимости от вида изоляции

Трубопровод уходящий в стену

Достаточно внешнего доступа.

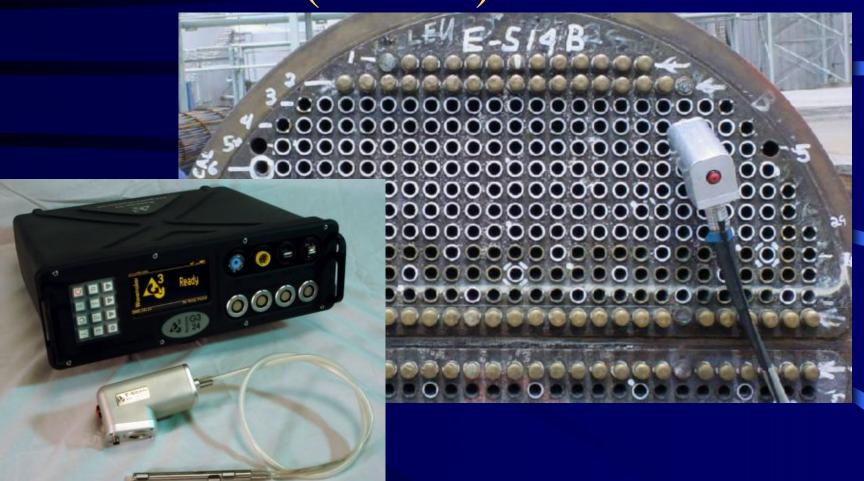
Можно проверить до 1м трубопровода в бетонной стене и до 20 метров в земляной стене

Подземные трубопроводы

Необходимо освободить небольшой участок трубы

Можно проверить около 20m трубопровода в каждом направлении с одной точки (в зависимости от трубы, покрытия и состояния грунта)

Широкий выбор для применения

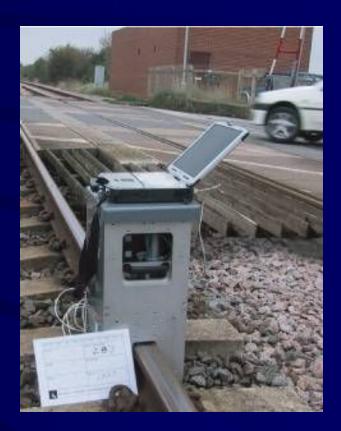


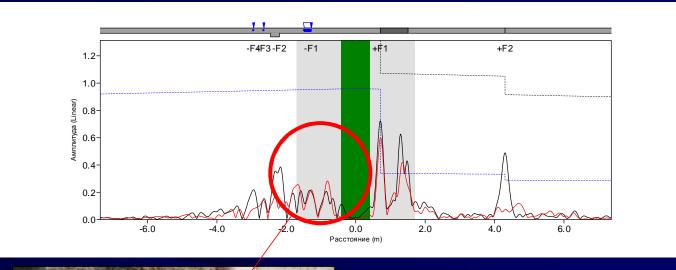
Дополнительные возможности системы

Система диагностики трубок (T-Scan)

Диагностика бойлерных труб (Клещи)

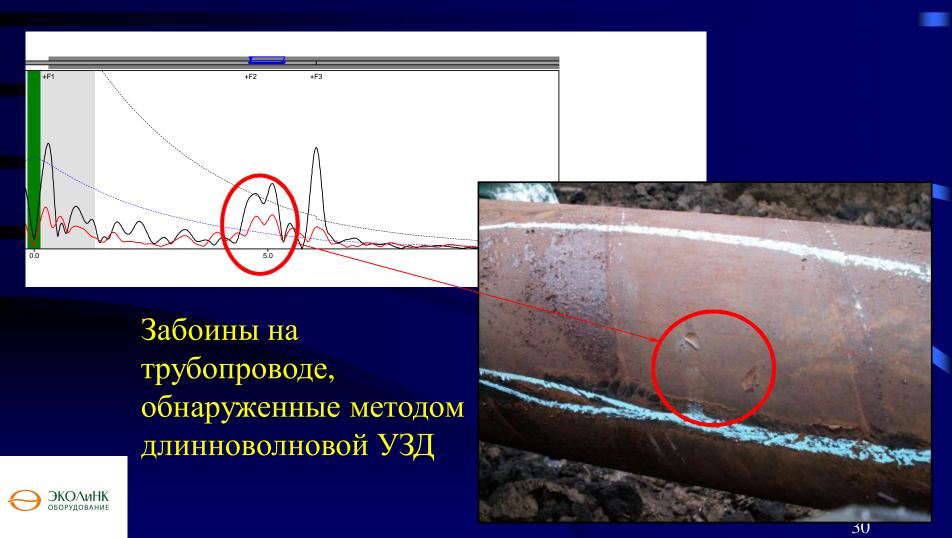
Ограниченный доступ для датчика

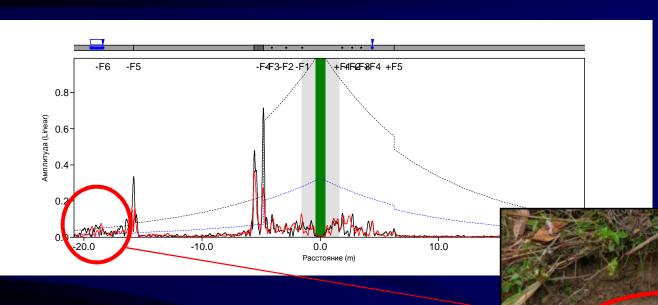

Кольца для постоянного


Система диагностики рельс (G-Scan)

ПРИМЕРЫ РЕЗУЛЬТАТОВ ДИАГНОСТИКИ С ПРИМЕНЕНИЕМ СИСТЕМЫ WAVEMAKER G3

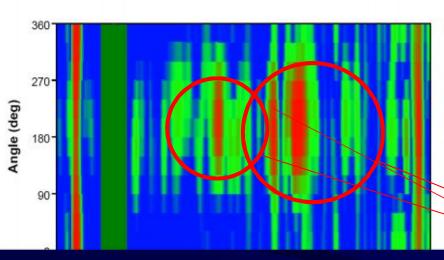
Диагностика напорного трубопровода Ø273 мм Самотлорского месторождения




Коррозионное повреждение трубопровода, обнаруженные при дополнительном обследовании

Техническое диагностирование газопровода «Савельевка-Бобровка» (Ø219 мм)

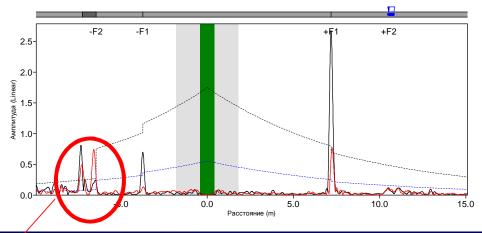
Диагностика напорного трубопровода Ø273 мм Самотлорского месторождения



На расстоянии 18,4 метра от кольца обнаружен дефект. При вскрытии участка выявлена язвенная коррозия

Диагностика участка трубопровода

новтоборного изличетора к.792 Ø114 мм


Обнаружены обширные дефекты на нижней образующей, хорошо видные на развертке трубопровода. При вскрытии участка и разрезке трубы в данных местах выявлена язвенная коррозия с остаточной толщиной около 3 мм

Диагностика напорного трубопровода **273 мм Самотлорского месторождения**

На расстоянии 8,5 метров от места постановки кольца обнаружен аномальный сварной шов. При ДДК выявлено смещение сварного шва глубиной более 5 мм.

Контроль технического состояния технологических трубопроводов ЦППН, ЦПС Южно-Ягунского

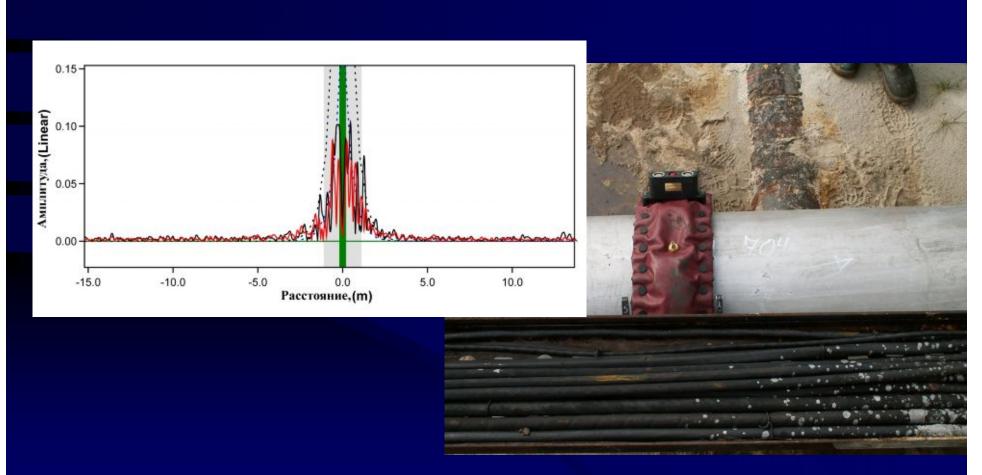
месторождения ТПП «Когалымнефтегаз»

• - вмятины на вертикальном участке трубы от сепаратора C3/3 до сепаратора 4/3, дефект 2 класса по результатам контроля У3Д системой «WAVEMAKER», минимальная фактическая толщина стенки трубопровода по результатам замеров составляет 6,0 мм. (при паспортной толщине – 8,0 мм.).

Контроль технического состояния технологических трубопроводов ЦППН, ЦПС Южно-Ягунского месторождения ТПП «Когалымнефтегаз»

• язвенная коррозия глубиной до 3,3 мм, дефект 2 класса (средняя степень коррозионного поражения) по результатам контроля УЗД системой «WAVEMAKER», минимальная фактическая толщина стенки трубопровода Ø219 по результатам замеров составляет 2,7 мм (при паспортной толщине – 6,0 мм.).

Контроль технического состояния технологических трубопроводов ЦППН, ЦПС Южно-Ягунского месторождения ТПП «Когалымнефтегаз»


• язвенная коррозия глубиной до 2,7 мм, дефект 2 класса (средняя степень коррозионного поражения) по результатам контроля УЗД системой «WAVEMAKER», минимальная фактическая толщина стенки трубопровода Ø530 по результатам замеров составляет 5,3 мм. (при паспортной толщине – 8,0 мм.).



Трубопровод пластовой воды от насосов НА-9,10,11,12 до точки врезки в низконапорный трубопровод на КНС-1,3,4,5 Южно-Ягунского месторождения, ЦППН,

ЦПС ТПП «Когалымнефтегаз»

• По опыту работ с системой, плохое распространение сигнала при диагностике системой «Wavemaker» при отсутствии битумной изоляции на трубопроводе может свидетельствовать о наличии твёрдых коррозионных отложений на внутренних стенках трубы и сплошной внутренней коррозии.

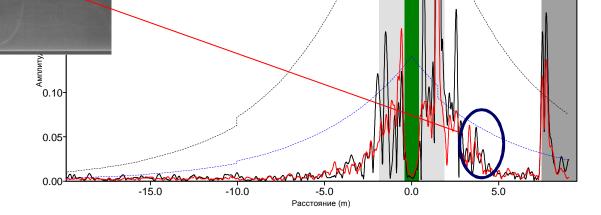
•Участок, на котором проводился замер, был вырезан и по итогам его осмотра были обнаружены твердые коррозионные отложения и нефтешлам на внутренних стенках трубы по всей длине участка, что и являлось причиной малого распространения сигнала.

Ключевые преимущества

• Диагностика действующих объектов

• Быстрая диагностика 100% тела объекта

• Требуется ограниченный доступ к объекту

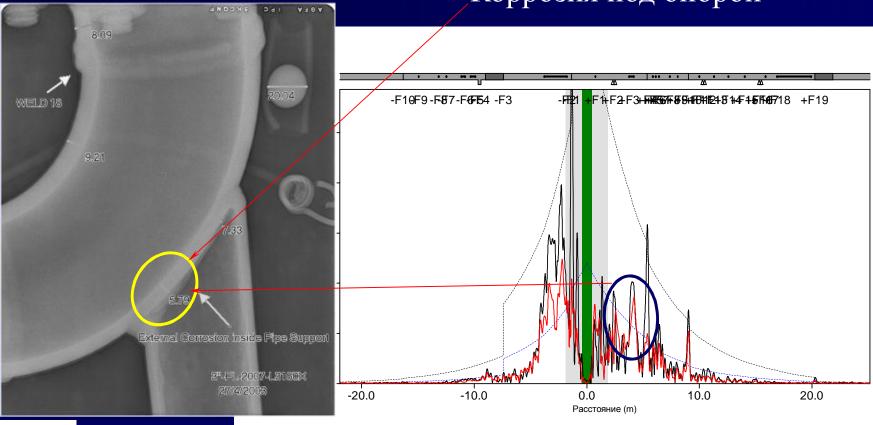


Комбинированный контроль с использованием КР

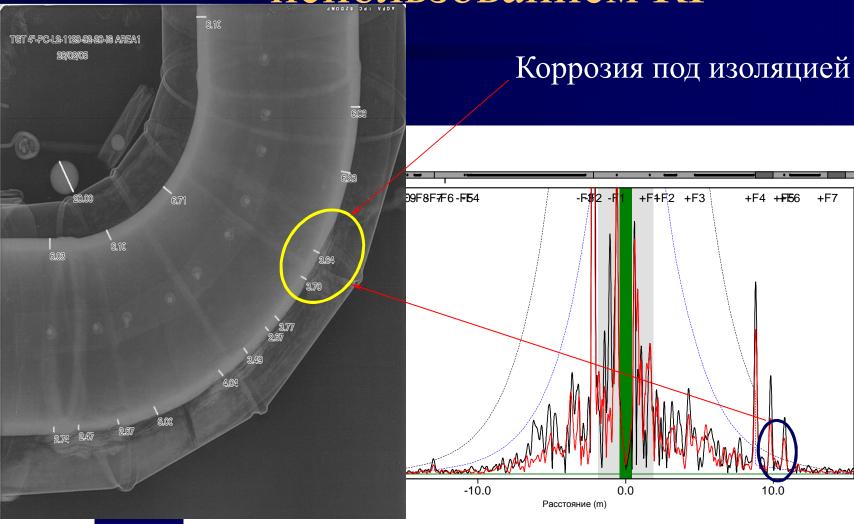
-F15-F143-F-F210F9F8F7

Коррозия под изоляцией

3-дюймовая коррозия под изоляцией



-F6-F5F4F3-F2 /F1


Комбинированный контроль с использованием КР

Коррозия под опорой

Комбинированный контроль с использованием КР

Портативное оборудование для видео радиографии OpenVisionTM LT-NDT

- •Легкая портативная радиографическая система для ручного контроля. Система включает высокочувствительный блок получения изображений и рентгеновскую трубку 70kV, работающую от батарей и разработанную специально для портативного использования в полевых условиях.
- •Область изображения поле изображения 10.16 cm x 15.24 cm
- •Размеры от трубки до блока изображения 33.02 cm to 68.58 cm, глубина охвата 43.18 cm
- •Энергия 40/55/70 k V, .1/.2/.3 mA
- •Пространственное разрешение 250 micron
- •Вес С рамка включая блок изображений, трубку и держатель:7.71kg, устройство контроля с держателем батарей:2.72 kg
- •Рабочая температура -34° C +49° C

Компания «Эколинк-Оборудование» готова предоставить

дополнительную информацию по данному оборудованию и методам контроля.

Контактная информация:

E-mail: info@ekolinknk.ru

Тел. +7 495 7896438

Факс +7 495 7896439

